




**TRADITION - PRECISION - QUALITY**  
**FROM SWITZERLAND** 

Jota AG Rotary Instruments  
Hirschenprungstrasse 2, 9464 Rüthi, Switzerland  
Phone +41 (0)71 767 79 99, info@jota.ch  
[www.jota.ch](http://www.jota.ch)  SWITZERLAND



**ZIRCONIA POLISHING COMPASS  
EDITION II**



**1-2 INTRODUCTION**

**3-6 PRE-SINTERPOL**

**7-14 KIT 1936**

**15-26 ZIRCONFLEX**

**27-33 ZirPrep**

**33-40 ZIR CUT**

**41-54 ZIR GLOSS**

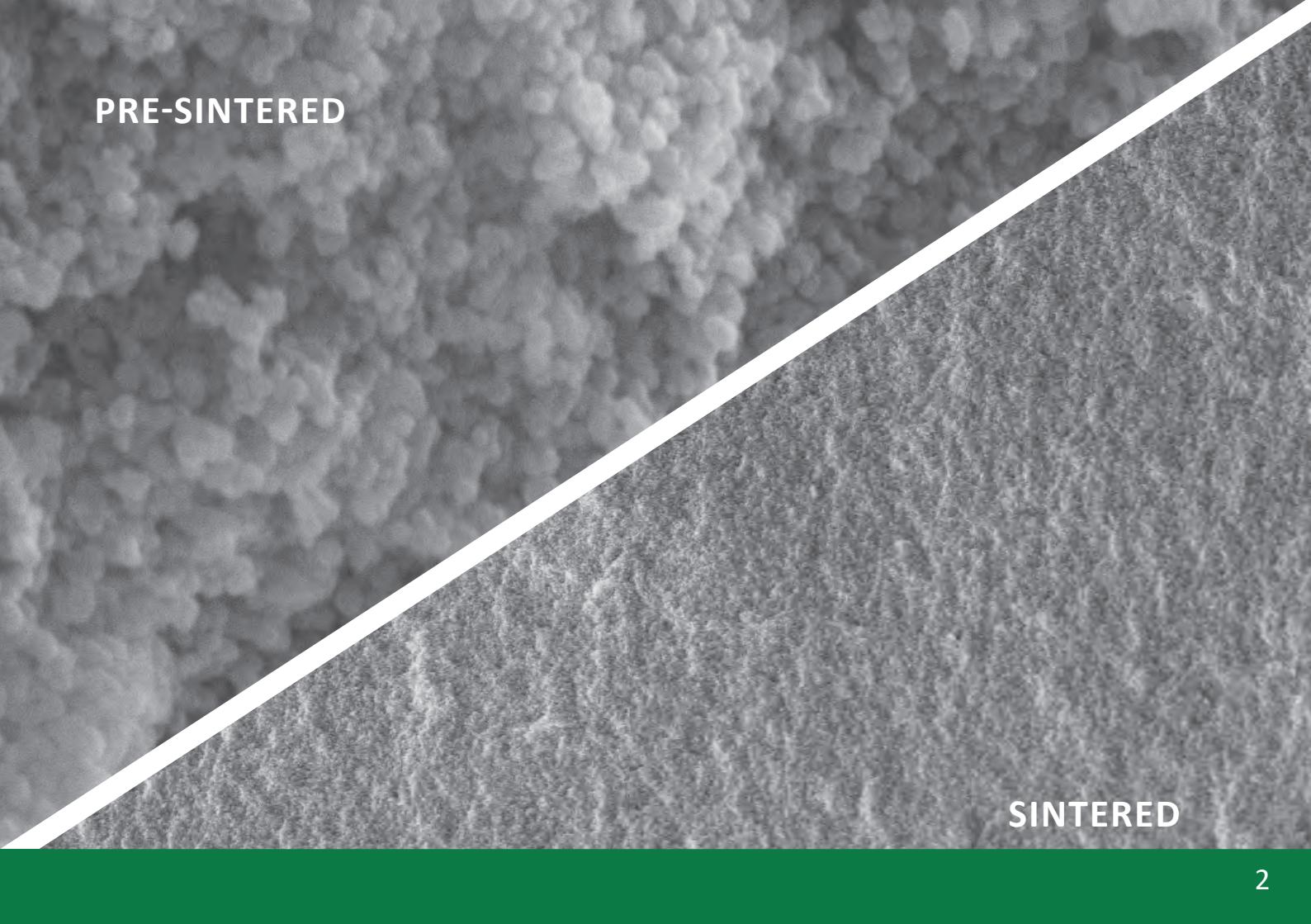
**55-66 KIT 1446**

**67-70 KITs**

**71-74 STUDY**

**75-76 REFERENCES**

**77-80 INDEX**


# Zirconium Dioxide (Zirconia, $\text{ZrO}_2$ )

Zirconia provides the ideal combination of **high strength, fracture toughness, aesthetics, and biocompatibility** for applications in dentistry. These unique properties are based on the mineralogical structure of the material. Zirconia has two states: pre- or un-sintered and sintered.

Pre-sintered zirconia has a loose structure, and sintered has a crystalline structure (see pictures on the right). Therefore, it is necessary to use instruments that are especially suited for these two states.<sup>2</sup>

To **avoid abrasion of the natural antagonist** and **reduce bacterial adhesion**, the microstructure of the zirconia surface is very important. The roughness influences the transmission, absorption, reflection, and scattering of light and therefore affects the esthetic appearance of the restorations.<sup>10</sup> Surface smoothness can be achieved by **polishing or glazing, or both**. Some studies showed that glazing significantly decreased the flexural strength values after grinding, but polishing did not.<sup>4,5</sup> Besides, the glaze layer is likely to diminish in the first 6 months after insertion of the restorations<sup>17</sup> or by any required adjustment, resulting in increased wear of the antagonist.<sup>16</sup> For these reasons, many **scientists prefer polishing** zirconia restorations.<sup>12,13</sup> If glazing is used to create a smooth surface, all zirconia restorations on the contact and proximal surfaces should still be polished before glazing.

Moreover, **polishing improves the durability and esthetics** of restorations by eliminating the defects caused by surface grinding.<sup>18</sup> Another advantage of polishing is the **reduced risk of plaque accumulation and periodontal diseases**.<sup>18</sup>



**PRE-SINTERED**

**SINTERED**

# PRE-SINTERED ZIRCONIA PROCESSING

Separating the restoration

C31RL.HPL.010




10'000 rpm  
500105143007010

932D.HP.220



10'000 rpm  
806104350524220



A close-up, high-contrast photograph of a dental procedure. A dental handpiece with a bur is being used to work on a dental model. The model is a light-colored, textured block with a circular base featuring four holes and a central circular opening. A dental mirror is held against the model to reflect the light. The background is dark.

jota

PRE-SINTERPOL

## PRE-SINTERED ZIRCONIA STEP 1 POLISHING

Developed for the lower strength of pre-sintered zirconia

ZIR9972M.HP.100

ZIR9974M.HP.055

9160.HP.140



4'000-7'000 rpm  
658104275423100



4'000-7'000 rpm  
658104275423055



7'000-12'000 rpm  
652104546503140



## PRE-SINTERED ZIRCONIA STEP 2 POLISHING

Zirconia is not contaminated with color pigments

ZIR9972F.HP.100 ZIR9974F.HP.055 9840.HP.140 9840.HP.170



4'000-7'000 rpm  
658104275413100



4'000-7'000 rpm  
658104275413055



7'000-12'000 rpm  
803104543503140



7'000-12'000 rpm  
803104543503170

# KIT 1936 GREEN STATE REFINING

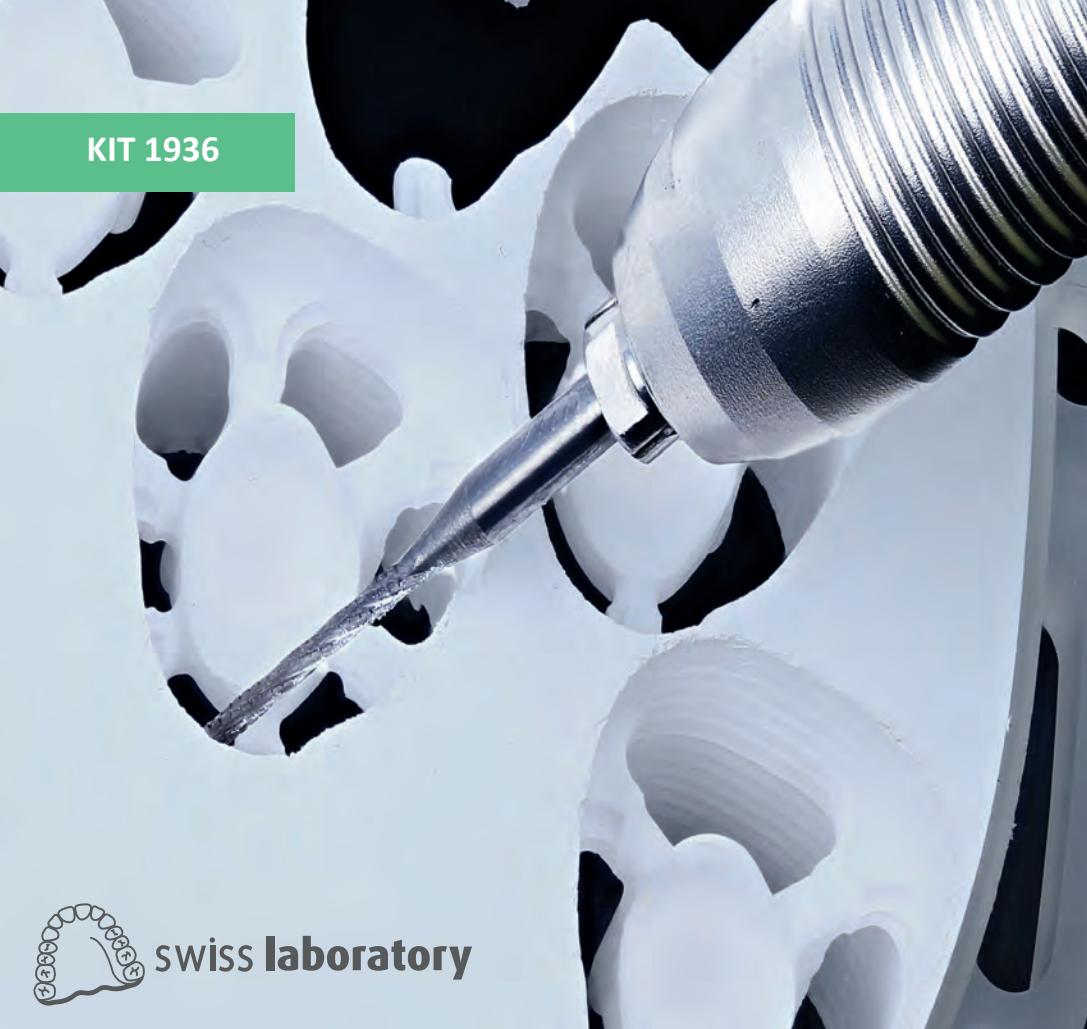
Polishing pre-sintered zirconia simplifies finishing after final sintering

Zirconia in the pre-sintered state has a **porous structure** and a **low strength**. A subsequent sintering process can not eliminate defects such as cracks and microchips developed after the manufacturing process or after shaping and structure adjusting.<sup>11</sup> Furthermore, polishing only at the zirconia sintering stage causes high material wear on the polishing tools and is very time-consuming. Therefore, **white-stage polishing** restoration is an essential step before the sintering process.

In a recent study, Pfefferle et al. (Munich, 2020) showed that white-stage polishing **improves the optical** and **mechanical properties** of zirconia, and **polishing after sintering takes less time** therefore, the pre-polishing step (green polisher) can thus be skipped. <sup>15</sup> Nevertheless, the two-steps polishing protocol increases flexural strength. Additional polishing step removes more surface defects and thus achieves a smoother surface. <sup>15</sup> Based on new scientific research, Jota has developed polishers **PRE-SINTERPOL** that do not change the color of the green state and improve the surface quality. It is not recommended to use polishing paste for pre-sintered zirconia polishing. Because it was shown that polishing paste could incorporate into the porous pre-sintered surface and reduce translucency of restoration. <sup>15</sup> Pre-sintered zirconia restorations should be polished **only in the dry state**.

Based on the new polishers **PRE-SINTERPOL**, a **KIT 1936 GREEN STATE REFINING** has been created, which includes a minimal set of instruments for detaching from the disc or block, grinding the connectors, texturing the surface, and white-stage polishing of the restoration.




**Swiss laboratory**

# jota



Video about Kit 1936 on YouTube

KIT 1936



Separating

C31RL.HPL.010



10'000 rpm  
500105143007010



swiss laboratory

## Connectors grinding and crown margin thinning

ZIR9972M.HP.100



4'000-7'000 rpm  
658104275423100



**KIT 1936**



 **swiss laboratory**

Fissures  
retightening

515L.HP.012



3'000-7'000 rpm

310104467211012

Surface texturing or  
fissures shaping

863.HP.012



50'000 rpm  
806104250524012



**KIT 1936**

Straight surfaces  
processing

882.HP.018



50'000 rpm  
806104142524018



## Smoothing and polishing

9840.HP.140

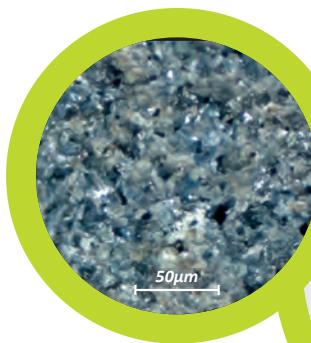



9840.HP.170

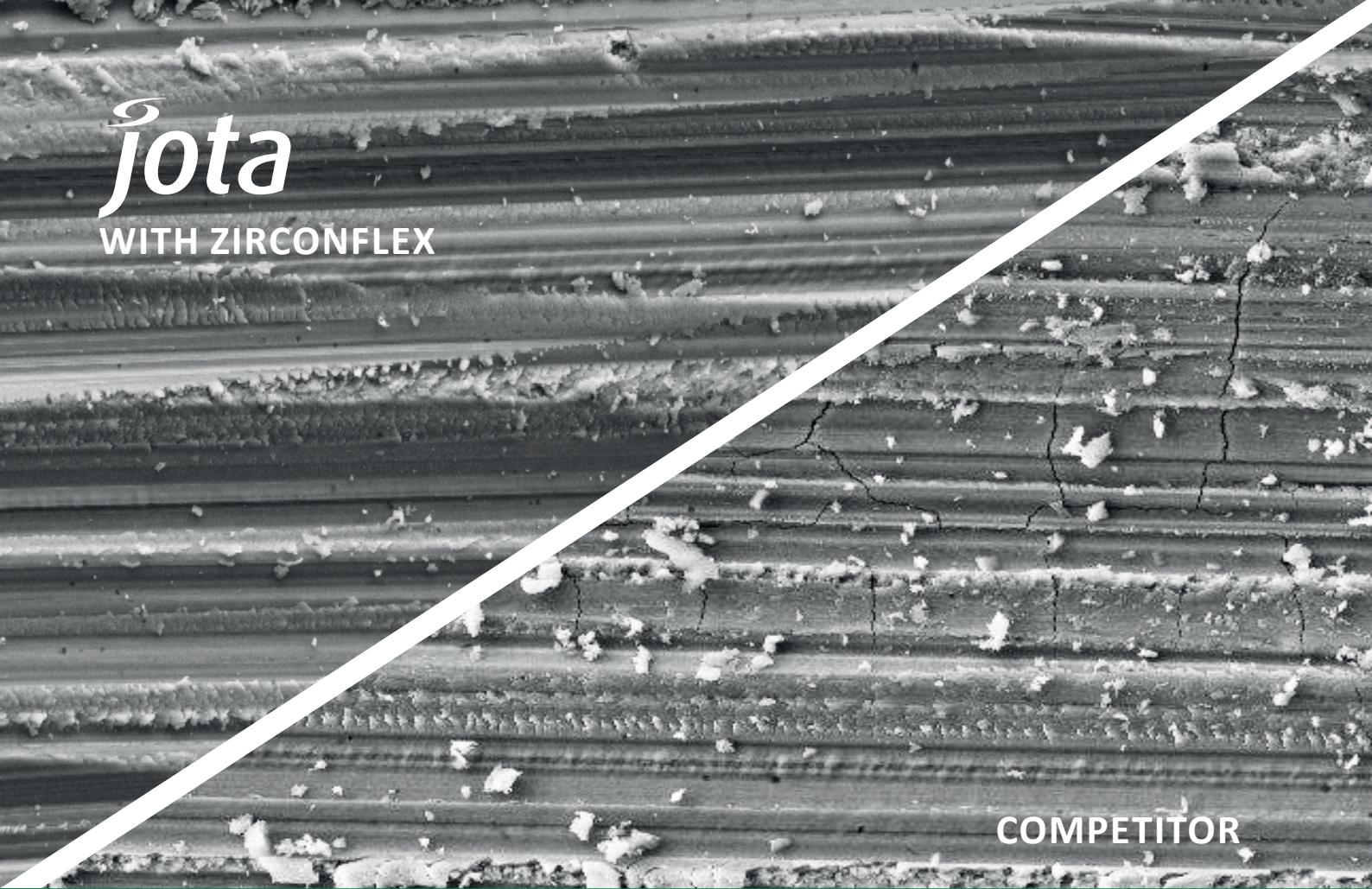


7'000-12'000 rpm  
803104543503140

7'000-12'000 rpm  
803104543503170




# SINTERED ZIRCONIA PROCESSING


## JOTA Zirconflex

**JOTA Zirconflex** is the **ideal partner for the preparation of sintered zirconia**, as it was specially developed for the preparation of zirconia. No water cooling is required, yet there is only minimal heat build-up, thus avoiding phase transition, damaging the material. Material is removed rapidly using minimal grinding pressure while at the same time protecting the material properties so that the risk of microcracks is reduced to a minimum.

Right is an electron microscope image of zirconia after preparation with **JOTA Zirconflex** and a competitor's product, magnified 1000 times. The JOTA example presents a spotless, smooth surface profile without microcracks. This surface has been ideally prepared for facing with build-up material.



- › Minimal heat build-up
- › Non-sparking
- › No water cooling required
- › Minimal grinding pressure
- › Minimal risk of microcracks
- › Concentric, vibration-free runout
- › High wear resistance



*jota*

WITH ZIRCONFLEX

COMPETITOR

# SINTERED ZIRCONIA PROCESSING

## JOTA Zirconflex

SZ722.HP.180



7'000 rpm  
655104304526180

SZ715.HP.160



7'000 rpm  
655104371526160



interdental regions adjusting



# SINTERED ZIRCONIA PROCESSING

## JOTA Zirconflex

SZ732.HP.050



10'000-15'000 rpm  
655104107526050

SZ736.HP.065



10'000-15'000 rpm  
655104012526065

SZ623.HP.060



10'000-15'000 rpm  
655104043526060



straight surfaces contouring



# SINTERED ZIRCONIA PROCESSING

## JOTA Zirconflex

SZ601.HP.035



10'000-15'000 rpm  
655104001526035

SZ602.HP.040



10'000-15'000 rpm  
655104001526040

SZ667.HP.035



10'000-15'000 rpm  
655104257526035



palatal, lingual and occlusal  
surfaces preparation



# SINTERED ZIRCONIA PROCESSING

## JOTA Zirconflex

SZ652R.HP.035



10'000-15'000 rpm  
655104199526035

SZ660.HP.040



10'000-15'000 rpm  
655104274526040

SZ638.HP.025



10'000-15'000 rpm  
655104110526025



preparation of the margins and labial surfaces



ZIRCONFLEX

# **SINTERED ZIRCONIA PROCESSING**

## **JOTA Glaze Prep intraoral**

GP662.RA.035



15'000-25'000 rpm  
655204288526035



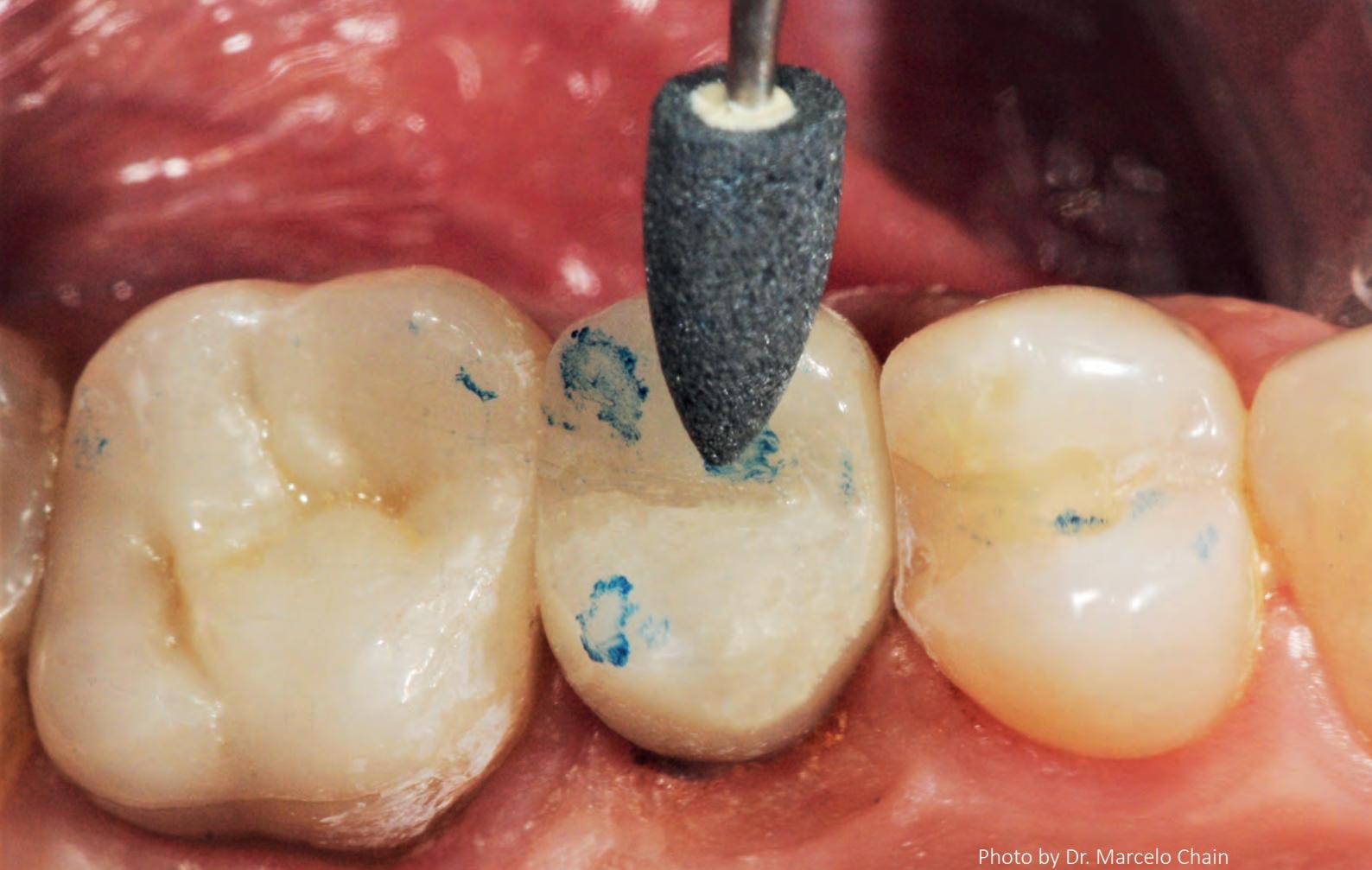



Photo by Dr. Marcelo Chain

# SINTERED ZIRCONIA PROCESSING

## JOTA ZirPrep

Sometimes it is necessary to adjust the early contacts after the crown has been fixed or after sintering in the laboratory. The **use of coarse diamond burs can lead to micro cracks** and subsequently increase the fragility of the restoration. Besides, coarse instruments remove the glazed layer and **increase the surface roughness**.<sup>2</sup> Kosmac et al. found that grinding with coarse-grit burs caused more **decrease in flexural strength** than grinding with fine grit.<sup>6</sup> The same results became Curtis et al.<sup>7</sup>

Grinding dental zirconia with **tungsten carbide burs causes a significant reduction of the biaxial flexural strength** and observed microstructural surface and subsurface damage. Tungsten carbide burs are not recommended for grinding dental zirconia.<sup>8</sup>

To fix these problems, Jota specifically developed **JOTA ZirPrep** diamonds with **unique diamond grains** and optimized bonding for sensitive zirconia surface preparation. ZirPrep diamonds provide **less aggressive** zirconia removal at moderate surface temperatures and no risk for micro cracks. Moreover, **durability** is outstanding thanks to specifically selected diamond grains. The additional white stripe can easily distinguish ZirPrep instruments.

Besides dental technicians can use these instruments with the laboratory turbine to correct zirconium oxide restorations or abutments, dentists may also perform reworks or fitting restorations.

JOTA ZirPrep diamonds should be used with **water cooling** only.



# ZirPrep Kit 1460

*jota*



**All ZirPrep instruments in one Kit**

## ZirPrep

Z801L.FG.014



300'000 rpm  
806314697324014

Z801LF.FG.014



300'000 rpm  
806314697314014





Z833.FG.023

Z833F.FG.023



190'000 rpm  
806314277324023



190'000 rpm  
806314277314023



**swiss laboratory**

## ZirPrep

Z863.FG.012



300'000 rpm  
806314250324012

Z863.F.G.012



300'000 rpm  
806314250314012





Z850.FG.018

Z850F.FG.018



250'000 rpm  
806314198324018



250'000 rpm  
806314198314018



**swiss laboratory**

# ZIRCONIA CROWN CUTTER

## ZIR CUT

Retrospective clinical evaluation studies showed that zirconia restorations have about **90 % survival rate** at 3.5 years and 10 years **62.1 %**, respectively. <sup>23,24,25</sup> Removing in case of replacement or endodontic access through zirconia restorations is a very difficult task for rotary instruments since zirconia is one of the hardest materials used in dentistry. Only a few instruments can grind zirconia, and it takes much time to make even a small hole in the crown. For this challenging task, Jota has developed a series of **ZIR CUT** instruments that can remove zirconium oxide restorations **fast and efficiently**. ZIR CUT has diamond grain, which is perfectly adapted to this special challenge.

Jota had designed especially **diamond discs** to separate full-ceramic crowns and bridges with three different depths. Two grains are available to suit the indications. The additional white stripe can easily distinguish ZIR CUT instruments. Discs have extremely **high cutting efficiency and long service life**. Use these discs to separate zirconia and hard ceramics restoration on vestibular, occlusal surfaces and incisal edge avoiding cervical areas. **Z838L** cutter is applied at an angle of 45° to the crown surface to cut materials on the cervical area. After separation, vestibular and occlusal surfaces widening pliers can widen and break the restoration.

1,7 mm



Ø

50



2,2 mm



60



3,2 mm



80



PERFORMANCE OF ZIRCUT



## RECOMMENDATIONS FOR USE:

- follow the recommendations for optimal rotation speed
- it is recommended to use the instruments in the contra-angle with higher torque
- water cooling is always required, especially during the trepanation procedure (min. 50 ml/min.)
- apply low contact pressure (<2N) and intermittent movements
- avoid contact of diamond discs with soft tissue, risk of injury! Use rubber dam to remove restorations to prevent soft tissue damage.

ZIR CUT

# ZIRCONIA CROWN CUTTER

## ZIR CUT

Z818.FG.050

Z818.FG.060

Z818.FG.080

APPLICATION MOVIE



80'000 rpm

806314041324050

80'000 rpm

806314041324060

80'000 rpm

806314041324080



jota



ZIR CUT

# ZIRCONIA CROWN CUTTER

## ZIR CUT

Z818G.FG.050

Z818G.FG.060

Z818G.FG.080

APPLICATION MOVIE



80'000 rpm  
806314041334050

80'000 rpm  
806314041334060

80'000 rpm  
806314041334080





ZIR CUT

# ZIRCONIA CROWN CUTTER

## ZIR CUT

Z838L.FG.014

Z801.FG.010

Z801.FG.021

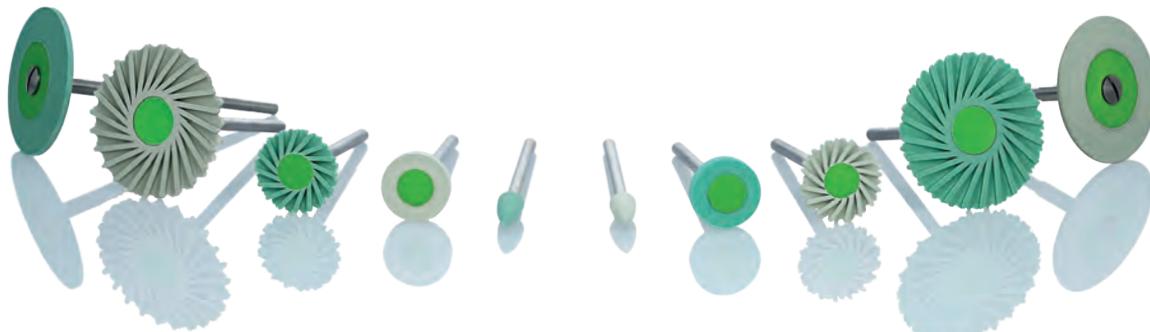
APPLICATION MOVIE



300'000 rpm  
806314140526014

300'000 rpm  
806314001324010

210'000 rpm  
806314001324021






# SINTERED ZIRCONIA POLISHING

## ZIR GLOSS

It is scientific proven that the use of diamond rubber polishers is the most suitable polishing method for zirconia ceramic restorations.<sup>9</sup> With the **Jota ZIR GLOSS** polishing system, we provide a precisely coordinated system for perfect high-lustre polishing of zirconium dioxide restorations. A perfect high-lustre is achieved in only **two polishing stages** using the **ZIR GLOSS** diamond polisher! The **Swivel Polishers** create a perfect high glossy surface and are ideal for polishing the occlusal areas.



*jota*



# SINTERED ZIRCONIA POLISHING

## STEP 1 PRE-POLISHING

ZIR9865M.HP.260

ZIR9867M.HP.110

ZIR9867M.HP.170



7'000-12'000 rpm  
803104303521260



7'000-12'000 rpm  
803104372521110



7'000-12'000 rpm  
803104372521170



all surfaces pre-polishing



# SINTERED ZIRCONIA POLISHING

## STEP 1 PRE-POLISHING

ZIR9866M.HP.040



7'000-12'000 rpm  
803104243521040

ZIR9868M.HP.140



7'000-12'000 rpm  
803104543521140

ZIR9868M.HP.170



7'000-12'000 rpm  
803104543521170



occlusal surface pre-polishing



ZIR GLOSS

# SINTERED ZIRCONIA POLISHING

## STEP 2 HIGH-GLOSS POLISHING

ZIR9865F.HP.260

ZIR9867F.HP.110

ZIR9867F.HP.170



7'000-12'000 rpm  
803104303511260



7'000-12'000 rpm  
803104372511110



7'000-12'000 rpm  
80310437251110



high-lustre polishing of all surfaces



# SINTERED ZIRCONIA POLISHING

## STEP 2 HIGH-GLOSS POLISHING

ZIR9866F.HP.040

ZIR9868F.HP.140

ZIR9868F.HP.170



7'000-12'000 rpm  
803104243511040



7'000-12'000 rpm  
803104543511140



7'000-12'000 rpm  
803104543511170



high-lustre polishing of occlusal surface



# SINTERED ZIRCONIA POLISHING

## ZIR GLOSS INTRAORAL

Many studies showed that unpolished zirconia can lead to increased wear of opposing enamel and dental restorations<sup>2</sup> and biofilm accumulation on the surface. Different studies reported that polishing the zirconia specimens yielded far **smoother surface and less antagonist enamel wear** compared with glazing.<sup>19,20,21,22</sup> Since only polishing is allowed after cementation, selecting a suitable polishing system is important.

The specially developed two-stage **intraoral Jota ZIR GLOSS** diamond polishing system **reduces surface roughness and minimizes wear on the opposing teeth**. Also, polishing **increases the longevity and aesthetics of restorations**.<sup>3</sup>



# STEP 1 PRE-POLISHING



ZIR9862M.RA.060



7'000-10'000 rpm  
803204030521060

ZIR9861M.RA.040



7'000-12'000 rpm  
803204243521040

ZIR9863M.RA.140



10'000-12'000 rpm  
803204543521140

ZIR GLOSS

# SINTERED ZIRCONIA POLISHING

## STEP 2 HIGH-GLOSS POLISHING

ZIR9862F.RA.060

ZIR9861F.RA.040

ZIR9863F.RA.140



7'000-10'000 rpm  
803204030511060

7'000-10'000 rpm  
803204243511040

10'000-12'000 rpm  
803204543511140





# ZIRCONIA POLISHING KIT 1446

The **KIT 1446** contains all the necessary instruments for processing and polishing various zirconium oxide restorations. **JOTA ZIRCONFLEX** for processing, adjusting and texturing surfaces. A two-stage diamond polishing system **ZIR GLOSS** allows all surfaces to be polished to a high gloss. Swivel instruments are able to penetrate with their villi into all fissures of the restoration. You don't need paste or water cooling to work with this kit. You get a restoration **with a better surface roughness** in just a few minutes than after glazing.

The smooth surface of the restoration provides **comfortable tactile sensation** for patients and **prevents plaque accumulation** on the surface of the restorations. In addition, it was scientifically proven that the polishing system does not change the structure of the zircon oxide and therefore provides **better micro-cracks resistance**.<sup>1</sup> The polished surface does not crack like glaze.



# jota



Play video

Video about Kit 1446 on YouTube



**KIT 1446**

Straight surfaces smoothing  
and margins thinning...



 **swiss laboratory**

additionally, connections points  
trimming

SZ732.HP.050



10'000-15'000 rpm  
655104107526050



KIT 1446

Supracontact points adjusting ...



 swiss laboratory

additionally, finishing of palatal, lingual  
and occlusal surfaces

SZ667.HP.035

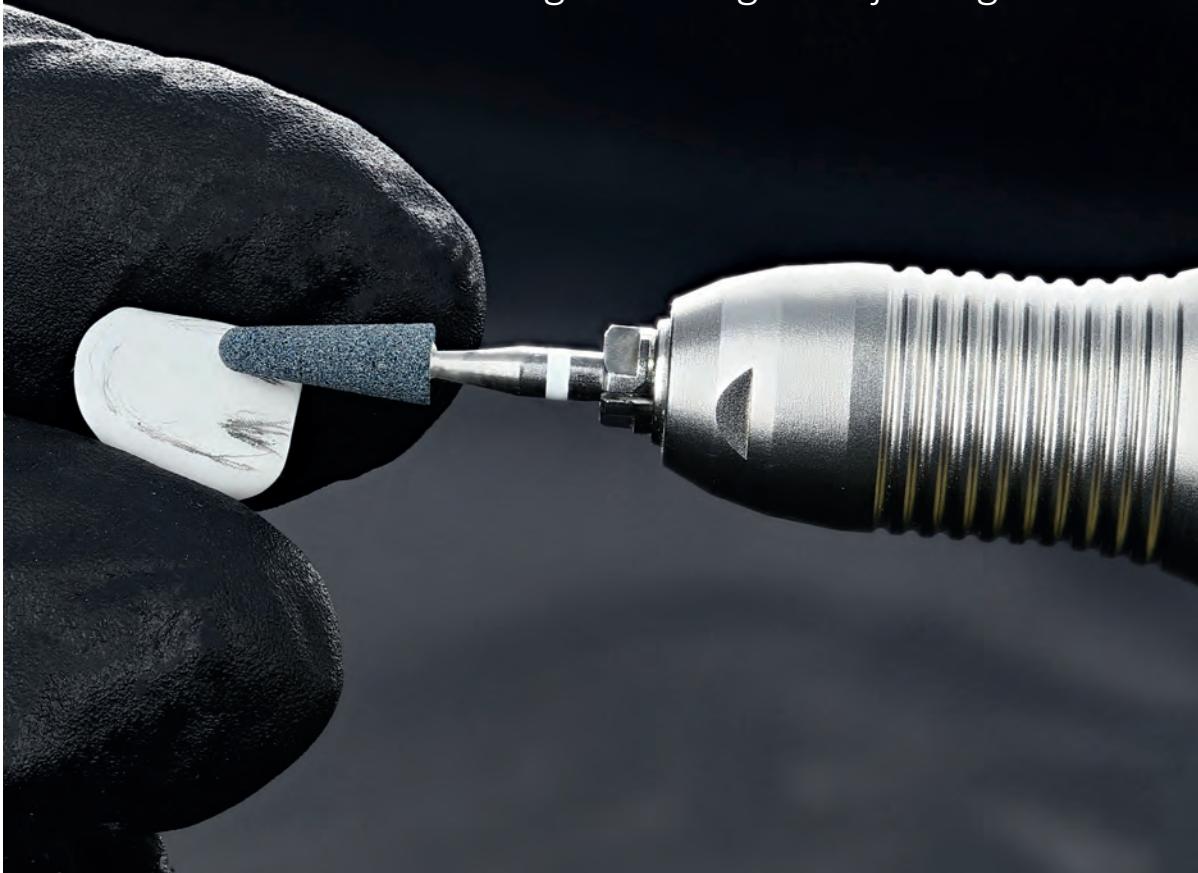


10'000-15'000 rpm  
655104257526035



**KIT 1446**

Interdental spaces finishing ...




and labial surface texturing and margins adjusting

SZ652R.HP.035



10'000-15'000 rpm  
655104199526035



**KIT 1446**



ZIR9865M.HP.260



7'000-12'000 rpm  
803104303521260



**swiss laboratory**

All surfaces pre-polishing

## occlusal surface pre-polishing

ZIR9868M.HP.140



7'000-12'000 rpm  
803104543521140



KIT 1446



ZIR9865F.HP.260



7'000-12'000 rpm  
803104303511260

High-lustre polishing  
of all surfaces

 swiss laboratory

## High-lustre polishing of occlusal surface

ZIR9868F.HP.140

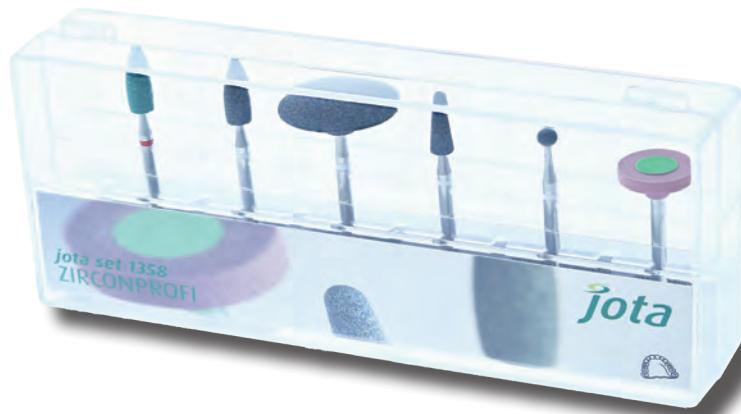


7'000-12'000 rpm  
803104543511140



# SINTERED ZIRCONIA PROCCESING KITS LAB

## ZIR Gloss Kit 1434

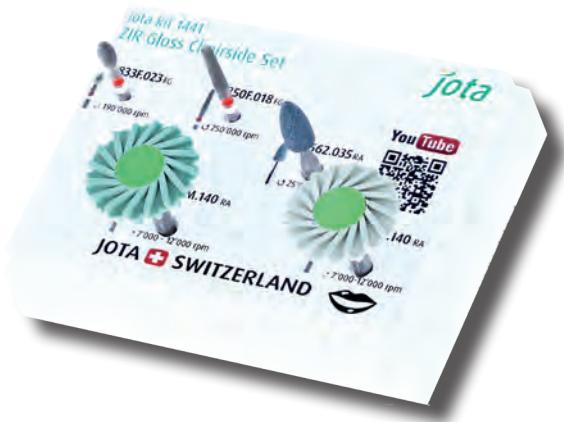



# swiss laboratory

**Jota Kit 1322  
ZIRCONFLEX**



**Jota Kit 1358  
ZIRCONPROFI**



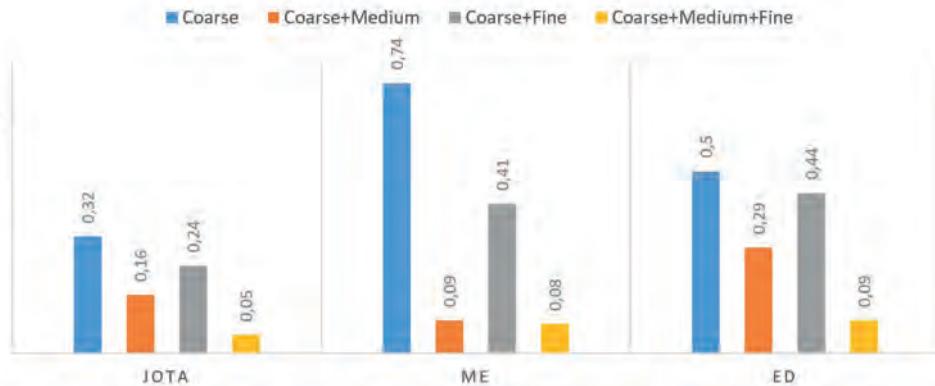

# SINTERED ZIRCONIA PROCESING KITS CHAIR SIDE

**Jota Kit 1436**  
**ZIR Gloss - Dentistry**



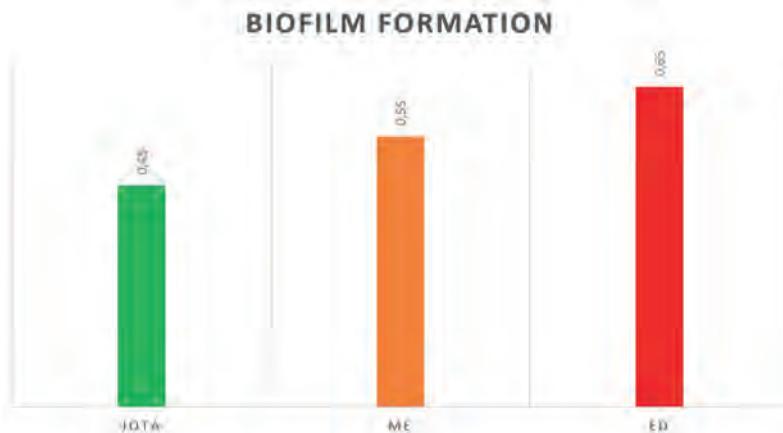
## Jota Kit 1441 ZIR Gloss Chairside Set




# EFFECTS OF DIFFERENT FINISHING/POLISHING PROTOCOLS AND SYSTEMS FOR MONOLITHIC ZIRCONIA ON SURFACE TOPOGRAPHY, PHASE TRANSFORMATION, AND BIOFILM FORMATION

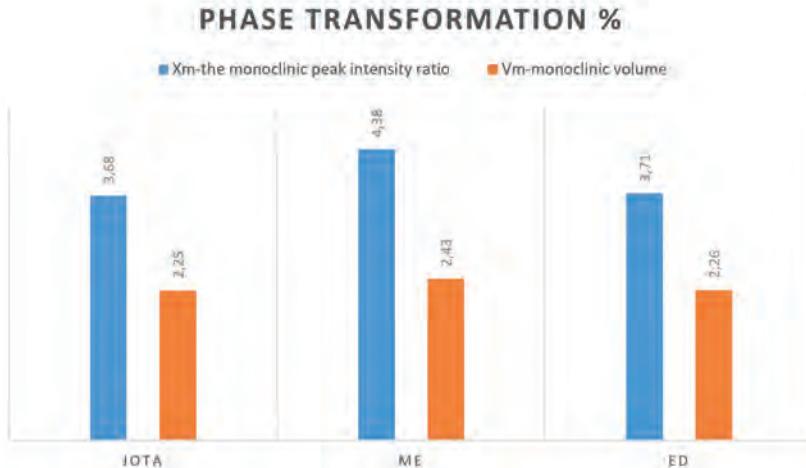
Hang-Nga Mai, Su-Hyung Hong, Sung-Hun Kim, and Du-Hyeong




JOTA Polishing Protocol has the lowest roughness Ra values and less than after glazing.<sup>1</sup>

## SURFACE ROUGHNESS (RA) VALUES OF MONOLITHIC ZIRCONIA SPECIMENS AFTER SURFACE TREATMENT

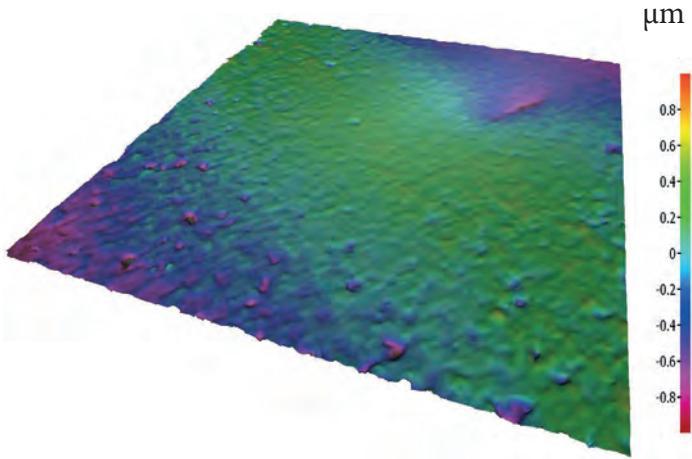



Glazing and polishing are two options for surface smoothing of zirconia restorations. Although glazing is a popular method for restoring the high-gloss surface of the restoration, glazed layers can reportedly become worn within 6 months of the restoration. On the other hand, the polishing procedure does not add any layer to the surface of the monolithic zirconia restoration. The polishing alone removes the material by abrasion in which polishing abrasives transmit the mechanical energy to the material, resulting in the surface roughness changing. Moreover, this method can produce surface roughness of  $0.2 \mu\text{m}$ , which is less than or equal to that achieved with glazing. Surface roughness  $\leq 0.2 \mu\text{m}$  provides minimal plaque accumulation and comfortable tactile sensation. Oral bacterial biofilm formation on the surfaces of restorations lead to surface biodegradation, secondary caries, gingivitis, and mouth odor.

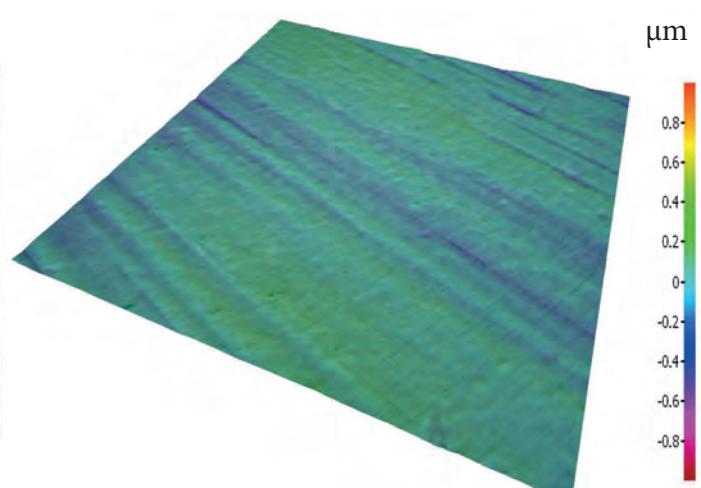
**Jota Polishing Protocol** showed minimal plaque accumulation on the surfaces.<sup>1</sup>



Zirconium-dioxide exists in three crystalline phases. Tetragonal phase provides better mechanical properties. The tetragonal phase is only partially stabilized, unfavorable phase transformation from the tetragonal phase to the monoclinic phase may occur when external energy is provided. Shape adjustments and finishing of zirconia in the clinic provides external energy to the zirconia crystal through local generation of heat and frictional force, which causes phase transformation. As a result, the increase in the monoclinic phase caused the degradation of zirconia's mechanical properties, which compromises the predictability of longevity of the prosthetic rehabilitation.


**Jota Polishing Protocol** showed the smallest phase transformation and therefore better crack resistance.<sup>1</sup>




## IMPORTANT!!!

All processing steps must be followed to achieve a perfectly smooth restoration surface. If the restoration has been processed with rough stones or diamond instruments, polishers cannot polish rough defects. Therefore, it is very important to use all the polishing steps. Namely, after rough processing, the mandatory use of **ZIRCONFLEX** instruments and only then polishers **ZIR GLOSS**.

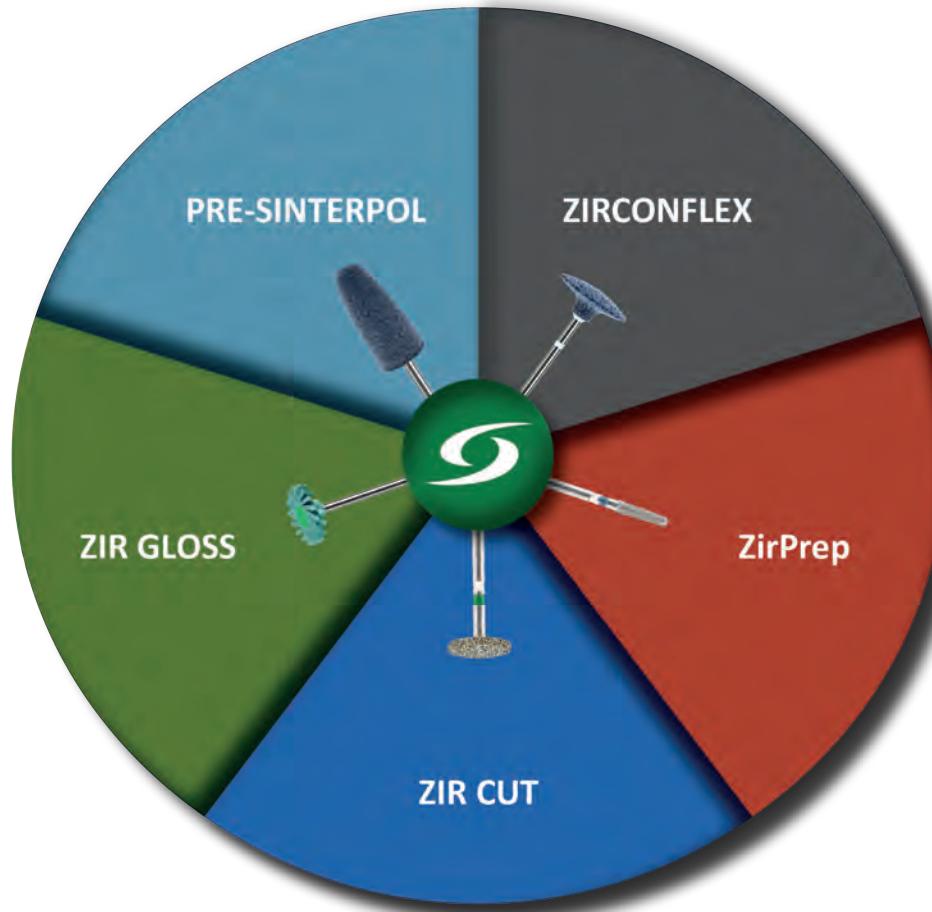
**Roughness after coarse grinding and polishing with ZIR GLOSS.**  
Mean  $S_a=0,213 \mu\text{m}$



**Roughness after coarse grinding, pre-processing with ZIRCONFLEX and two-stage polishing with ZIR GLOSS.**  
Mean  $S_a=0,067 \mu\text{m}$



## References


1. Hang-Nga Mai, Su-Hyung Hong, Sung-Hun Kim, and Du-Hyeong. Effects of different finishing/polishing protocols and systems for monolithic zirconia on surface topography, phase transformation, and biofilm formation. *J Adv Prosthodont.* 2019 Apr; 11(2): 81–87. Published online 2019 Apr 26. doi: 10.4047/jap.2019.11.2.81
2. Caglar I., Ates S.M., Duymus Z.Y., The effect of various polishing systems on surface roughness and phase transformation of monolithic zirconia. *J Adv Prosthodont.* 2018 Apr; 10(2): 132–137.
3. Preis V., Behr M., Handel G., Schneider-Feyrer S., Hahnel S., Rosentritt M. Wear performance of dental ceramics after grinding and polishing treatments. *J Mech Behav Biomed Mater.* 2012 Jun;10:13-22.
4. Bassir M.M. , Babasafari M., Rezvani M.B., Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. *J Prosthet Dent.* 2017 Nov;118(5):658-665.doi: 10.1016/j.prosdent.2016.12.019. Epub 2017 Apr 3.
5. Yener E.S., Ozcan M., Kazazoglu E. The effect of glazing on the biaxial flexural strength of different zirconia core materials . *J Acta Odontol Latinoam.* 2011; 24(2):133-40.
6. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. Strength and reliability of surface treated Y-TZP dental ceramics. *J Biomed Mater Res A* 2000;53:304-313.
7. Curtis AR, Wright AJ, Fleming GJP. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. *J Dent Res* 2006;34:195-206.
8. Walter Y.H., LamaHenry W.K. The adverse effects of tungsten carbide grinding on the strength of dental zirconia. *J Dental Materials* Volume 36, Issue 4, April 2020, Pages 560-569.
9. Leite Vila-Nova T.E., Gurgel de Carvalho I.H., Duarte Moura D.M., Dantas Batista A.U., Zhang Y., Paskocimas C.A., Bottino M.A., Assunção E Souza R.O. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO<sub>2</sub> ceramic. *J Dent Mater.* 2020 Apr;36(4):e126-e139.
10. Shahmiri R, Standard OC, Hart JN, Sorrell CC (2018) Optical properties of zirconia ceramics for esthetic dental restorations: a systematic review. *J Prosthet Dent* 119:36–46. <https://doi.org/10.1016/j.prosdent.2017.07.009>
11. Yin L, Nakanishi Y, Alao AR, Song XF, Abdou J, Zhang Y (2017) A review of engineered zirconia surfaces in biomedical applications. *Procedia CIRP* 65:284–290. <https://doi.org/10.1016/j.procir.2017.04.057>
12. Preis V, Behr M, Hahnel S, Handel G, Rosentritt M (2012) In vitro failure and fracture resistance of veneered and full-contour zirconia restorations. *J Dent* 40:921–928. <https://doi.org/10.1016/j.jdent.2012.07.010>

13. Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO (2013) The wear of polished and glazed zirconia against enamel. *J Prosthet Dent* 109:22–29. [https://doi.org/10.1016/S0022-3913\(13\)60005-0](https://doi.org/10.1016/S0022-3913(13)60005-0)
14. Sabrah AH, Cook NB, Luangruangrong P, Hara AT, Bottino MC (2013) Full-contour Y-TZP ceramic surface roughness effect on synthetic hydroxyapatite wear. *Dent Mater* 29:666–673. <https://doi.org/10.1016/j.dental.2013.03.008>
15. Pfefferle R., Lümkemann N., Wiedenmann F., Stawarczyk B. Different polishing methods for zirconia: impact on surface, optical, and mechanical properties. *Clinical Oral Investigations* (2020) 24:395–403
16. Rosentritt M, Preis V, Behr M et al. Two-body wear of dental porcelain and substructure oxide ceramics. *Clin Oral Investig* 2012; 16 (3): 935–943.
17. Etman MK, Woolford M, Dunne S. Quantitative measurement of tooth and ceramic wear:In vivo study. *Int J Prosthodont*. 2008;21:245–52.
18. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. *Dent Mater*. 1997;13:258–69
19. Bai Y, Zhao J, Si W, Wang X. Two-body wear performance of dental colored zirconia after different surface treatments. *J Prosthet Dent*. 2016;116:584–90.
20. Kontos L, Schille C, Schweizer E, Geis-Gerstorfer J. Influence of surface treatment on the wear of solid zirconia. *Acta Odontol Scand*. 2013;71:482–7
21. Park JH, Park S, Lee K, Yun KD, Lim HP. Antagonist wear of three CAD/CAM anatomic contour zirconia ceramics. *J Prosthet Dent*. 2014;111:20–9
22. Giti R., Haghdoost S., Ansarifard E. Effect of different coloring techniques and surface treatment methods on the surface roughness of monolithic zirconia. *Dent Res J (Isfahan)*. 2020 Mar-Apr; 17(2): 152–161.
23. Miura S., Yamauchi S., Kasahara S., Katsuda Y., Fujisawa M., Egusa H. Clinical evaluation of monolithic zirconia crowns: a failure analysis of clinically obtained cases from a 3.5-year study, *Journal of Prosthodontic Research*, 2019, p. 643.
24. Miura S, Kasahara S, Yamauchi S, Okuyama Y, Izumida A, Aida J, Egusa H. Clinical evaluation of zirconia-based all-ceramic single crowns: an up to 12-year retrospective cohort study. *Clin Oral Investig*. 2018 Mar;22(2):697–706. doi: 10.1007/s00784-017-2142-y. Epub 2017 Jun 12. PMID: 28608051
25. Gunge H., Ogino Y., Kihara M., Tsukiyama Y., Koyano K., Retrospective clinical evaluation of posterior monolithic zirconia restorations after 1 to 3.5 years of clinical service, *Journal of Oral Science*, 2018, 60.

| Match Code                            | ISO             | Page  |
|---------------------------------------|-----------------|-------|
| 515L.HP.012                           | 500104467211023 | 11    |
| 863.HP.012                            | 806104250524012 | 12    |
| 882.HP.018                            | 806104142524018 | 13    |
| 9160.HP.140                           | 652104546503140 | 5     |
| 932D.HP.220                           | 806104350524220 | 3     |
| 9840.HP.140                           | 803104543503140 | 6, 14 |
| C31RL.HPL.010                         | 500105143007010 | 3, 9  |
| GP662.RA.035                          | 655204288526035 | 25    |
| Kit 1322 Jota ZIRCONFLEX              | 1322            | 68    |
| Kit 1358 Jota ZIRCONPROFI             | 1358            | 68    |
| Kit 1434 Jota ZIR Gloss               | 1434            | 67    |
| Kit 1436 Jota ZIR Gloss-Dentistry     | 1436            | 69    |
| Kit 1441 Jota ZIR Gloss Chairside Set | 1441            | 70    |
| Kit 1446 ZIRCONIA POLISHING           | 1446            | 55-66 |
| Kit 1460 ZirPrep                      | 1460            | 28    |
| Kit 1936 Green State refining         | 1936            | 7-14  |
| SZ601.HP.035                          | 655104001526035 | 21    |
| SZ602.HP.040                          | 655104001526040 | 21    |
| SZ623.HP.060                          | 655104043526060 | 19    |
| SZ638.HP.025                          | 655104110526025 | 23    |

| Match Code    | ISO             | Page     |
|---------------|-----------------|----------|
| SZ652R.HP.035 | 655104199526035 | 23,61,62 |
| SZ660.HP.040  | 655104274526040 | 23       |
| SZ667.HP.035  | 655104257526035 | 21,59,60 |
| SZ715.HP.160  | 655104371526160 | 17       |
| SZ722.HP.180  | 655104304526180 | 17       |
| SZ732.HP.050  | 655104107526050 | 19,57,58 |
| SZ736.HP.065  | 655104012526065 | 19       |
| Z801.FG.010   | 806314001324010 | 39       |
| Z801.FG.021   | 806314001324021 | 39       |
| Z801L.FG.014  | 806314697324014 | 29       |
| Z801LF.FG.014 | 806314697314014 | 29       |
| Z818.FG.050   | 806314041324050 | 35       |
| Z818.FG.060   | 806314041324060 | 35       |
| Z818.FG.080   | 806314041324080 | 35       |
| Z818G.FG.050  | 806314041334050 | 37       |
| Z818G.FG.060  | 806314041334060 | 37       |
| Z818G.FG.080  | 806314041334080 | 37       |
| Z833.FG.023   | 806314277324023 | 30       |
| Z833F.FG.023  | 806314277314023 | 30       |
| Z838L.FG.014  | 806314140526014 | 39       |

| Match Code      | ISO             | Page   |
|-----------------|-----------------|--------|
| Z850.FG.018     | 806314198324018 | 32     |
| Z850F.FG.018    | 806314198314018 | 32     |
| Z863.FG.012     | 806314250324012 | 31     |
| Z863F.FG.012    | 806314250314012 | 31     |
| ZIR9861F.RA.040 | 803204243511040 | 53     |
| ZIR9861M.RA.040 | 803204243521040 | 52     |
| ZIR9862F.RA.060 | 803204030511060 | 53     |
| ZIR9862M.RA.060 | 803204030521060 | 52     |
| ZIR9863F.RA.140 | 803204543511140 | 53     |
| ZIR9863M.RA.140 | 803204543521140 | 52     |
| ZIR9865F.HP.260 | 803104303511260 | 47,65  |
| ZIR9865M.HP.170 | 803104303521170 | 43, 63 |
| ZIR9866F.HP.040 | 803104243511040 | 49     |
| ZIR9866M.HP.040 | 803104243521040 | 45,64  |
| ZIR9867F.HP.110 | 803104372511110 | 47     |
| ZIR9867M.HP.110 | 803104372521110 | 43     |
| ZIR9868F.HP.140 | 803104543511140 | 49, 66 |
| ZIR9868F.HP.170 | 803104543511170 | 49     |
| ZIR9868M.HP.140 | 803104543521140 | 45     |
| ZIR9868M.HP.170 | 803104543521170 | 45     |



| Match Code      | ISO             | Page  |
|-----------------|-----------------|-------|
| ZIR9972F.HP.100 | 658104275513100 | 6     |
| ZIR9972M.HP.100 | 658104275523100 | 5, 10 |
| ZIR9974F.HP.055 | 658104234513055 | 6     |
| ZIR9974M.HP.055 | 658104243523055 | 5     |

Jota Dealer:



CE 0483

SUBSCRIBE OUR CHANNELS

